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Abstract 

The steady, zonally symmetric motion of a shallow 

incompressible atmosphere on a rapidly rotating earth subject 

to an equator-ward temperature gradient is studied. The assump- 

tions made allow the thermodynamics to be treated separately 

from the motions.  The turbulence terms are modelled using mixing 

length arguments. Assuming the turbulence length scale is small 

compared to the earth's radius and the motion is slow compared to 

the earth's rotation speed, the north-south geopotential gradient 

drives the eastward winds in the "intfjrior" temperate regions, 

that is, not near the surface, equator or poles. The meridional 

winds in the interior are driven by the turbulence generated by 

the shear in the eastward winds.  Near the equator the advective 

terms become comparable with the rotational terms, but the 

turbulence terms remain unimportant.  The motions there show 

trade winds at the equator, changing to eastward at a predicted 

latitude of about 15°. The meridional motion takes the form of 

Hadley cells with rising at the equator and sinking again at 

about 21°.  The Hadley cell and the temperate region are 

connected through a vertical layer of turbulence. Near the poles 

the advective and turbulent terms become comparable with the 

rotation terms.  Surface Ekman layers complete the picture. 

Preceding page blank ill 
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1. Introduction 

When viewed from outer space, the earth's atmosphere, as 

evidenced by the cloud patterns, shows no signs of symmetry or 

regularity.  However, analysis of wind and temperature data over 

long periods of time shows that on the average the atmosphere 

behaves in a regular manner.  Prevailing westerlies, trade winds 

and the Hadley circulation are gross features of the motion 

which are observed from average data. 

In 1735, George Hadley initiated the idea that solar 

heating at the equator forced the air there to rise, and hence 

he conjectured that the air, once aloft, travelled to the poles, 

where it sank back to the surface to journey toward the equator 

again.  Subsequent observations by Ferrel around the 1880's 

suggested that the ftir rising at the equator did not travel to 

the poles, but sank back to the surface at about 30 north or 

south latitude.  In addition, the cold air sinking at the polos 

rose again at about 60° north or south latitude.  In between 

these cells was a single cell rising at 60° and sinking at 30 

in each hemisphere.  The conjectures mechanism to drive the 

temperature cell was friction between the adjacent thermally 

driven colls; while the eastward winds therein were the result 

of the rotational (Coriolis) force interacting with the meridio- 

nal motions.  Because of the appearance of three cells in each 

hemisphere, mechanisms to explain the motions by explaining the 

presence of each cell have been called tricellular theories. 

The aforementioned tricellular theory of driving the 

motions has fallen into disfavor, one reason being that if the 
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heating drives the motions in the tropical and polar cells, the 

winds in the temperate cell are necessarily weaker since it is 

driven by the others.  But the prevailing westerlies observed in 

the temperate cell are much too strong to be secondary or 

frictionally forced winds. 

A recent popular explanation of the driving mechanism is 

the wave theory (Pfeffer, 1964).  In this theory, the north-south 

temperature gradient induced by solar heating drives wave 

cyclones and anticyclones.  The nonlinear interactions of these 

waves cause a mean zonal flow.  The zonal flow in turn drives the 

meridional cells through the mechanism of the Coriolis force. 

We give a new explanation for the general circulation in 

which the north-south temperature gradient drives the zonal 

motions in the temperate cell throag^ the geopotential gradient. 

The zonal motions in the tropical and polar cells are driven by 

the zonal motion in the temperate cell through friction between 

the cells. More precisely, the eastward motion at the poleward 

edge of the tropical cell causes an eastward motJjn inside the 

tropical eel], at least for some distance.  The Coriolis effects 

cause a strong meridional motion and the trade 'in^s.  The 

meridional motions in the temperate cell are driven by frictional 

interactions with the mean zonal flow and the tropical and polar 

meridional motions. 

In order to describe the motions, we shall use the fluid 

mechanical and thermodynamical equations for the zonally sym- 

metric (i.e. independent of longitude) flow of a shallow layer 

of fluid. Moreover, following Saltzman (1968), we shall make e 
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Boussinesq-like approximation, neglecting density variations 

except in the vertical momentum equation.  The shallow atmosphere 

assumption allows us to use the hydrostatic pressure equation 

for vertical momentum balance.  This assumption also allows the 

neglect of the vertical velocity, except in terms involving 

vertical derivatives, which are large.  The hydrostatic pressure 

equation allocs us to use the pressure as the vertical coordinate, 

replacing ?, the height above sea level.  The relevant vertical 

"velocity" is cu = dp/dt, the material derivative of the pressure. 

We shall refer to m  as the vertical p-velocity, and to w = dz/dt 

as tbe vertical z-velocity. The pressure gradient terms are 

expressed in terms of the geopotential, defined as $ = gz($,p), 

where z((J),p) is the height of the isobar surface of pressure p. 

The average motions which we wish to describe are, to a 

large degree, both steady and zonally symmetric. Thus we shall 

assume that time and longitudinal derivatives may be neglected. 

When the equations are appropriately nondimensionalized, 

there appear two Important parameters, the Rossby number 

Ro ■ U/ana, and the Ekman number £ =  e/20U.  Here U is the 

velocity scale, O is the rotation rate of the earth, a is the 

radius of the earth, and e is the scale of the turbulent flux of 

momentum per unit mass.  In the earth's atmosphere, the Ekman 

number and the Rossby numb T  are both smalx, typical values being 

C -J> -1 
6 ^ 10 , Ro ~ 10  ,  The presence of these small parameters in 

the problem allows the hope of meaningful approximate solutions 

valid in different parts of the meridional (<f-p) plane. 
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For example,   the Ekmaii number,   which measures  the  impor- 

tance  of turbulence,   is  qur.te  small,   and presumably multiplies 

the  highest derivatives.     This  implies  that  the  regions where 

turbulence  is  important are boundary layers which are thin com- 

pared to  the  scale   of global motions.     The  Hossby number,   which 

measures  the  importance  of auvectijn,   is  also small,   although 

not  as  small  as  the  Ekman number.     Thus  the  advection terms  are 

important  only  in  relatively  small regions  compared  to  large 

scale motions.     The  regions where advection is  important,   how- 

ever,   are  large  compared  to the  turbulent  or Ekman layers. 

2.   Equations  of Motion 

The equations  of motion and heat balance  for the  zonally 

symmetric  flow of a shallow atmosphere   (Saltzman,   1968)  are 

(2.1) (D 
OP 

/£ ou ccs  (fc   ^      0 

a cos  (|) difi 

(2.2)        v -*! + w il +  (f   r tanj G)a + _a| 
adi ^P a aäj 

-   Y =  0  , 

(2.3) ^ + X T =--  0  , 
dp       p 

(2.4) _CXU    .        ^V   COS    ij) 

op       a cos  ij) ^(j) 
0 , 

(2.5) 
aä(j) öp       c p 
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A caret is used to denote dimensional variables.  Here u, v are 

tne eastward and northward components of velocity, \  is the 

latitude, p is the pressure, a - dp/dt (t is time), $ is the 

gravitational potential, a is the planet radius, T is the temper- 

ature, R is the gas constant, and cp is the heat capacity of the 

atmosphere.  Also, f - 20 sin ) is the Coriolis parameter, where 

O is the ongular velocity of planetary rotation.  The quantities 

X, Y, Q, to be specified, represent turbulent diffusion and 

thermal forcing of the atmospheric motions. 

It is not our goal to study the thermodynamics of the atmo- 

sphere. We shall assume that we can prescribe the gravitational 

potential $(i,p).  This assumption, along with the Boussinesq 

approximation, effectively separates the thermodynamics from the 

mechanics, since by determining the motions in terms of t« we can 

eliminate the velocity components from the thermodynamic equa- 

tions, yielding equations for $, T and other appropriate vari- 

ables,  Saltzman (1968) discusses a similar approach. 

The region in space where these equations govern the motion 

is 

-f i* «^ 

o j^ p < pg(4) , 

where p (<j)) is the pressure at the surface. 

The boundary conditions which are needed to complete the 

system fall into two categories, turbulent (viscou.^ and symmetry. 

The turbulent boundary conditions are 
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(2.6a,b) 

(2.7) 

u = v = 0 on p = ?,(♦) , 

no stress on p = 0 . 

Because the level p = o actually corresponds to z = oo, an 

unrealizable situation, we snail not attempt to satisfy (2.7). 

This boundary condition can presumably be satisfied by inclusion 

of a turbulent boundary layer at p = 0.  A more realistic 

approach to the boundary condition at the "top" of the atmosphere 

might be to apply a condition at some p = p., « B ff) corre- 

spending to a shallow atmosphere, say at about JO km.  The 

appropriate condition should reflect the presence of the atmo- 

sphere above 50 km. 

The symmetry boundary conditions are 

dS (2.3a,b) 

(2.9a,b) 

Let us nondimensionalize the equations with 

v= — =0 at  (j) = 0, 

v=u=0 at  I • * £ a 

r u = Uu , 

v = Vv , 

(2.10) 

p = P0P ,     f * 4e -i- ^04 i 

• = (P0V/a(t>o)ü} , 

* = $0<t> , 

(X,Y) = e(x,Y) , 
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where U is a velocity scale, 4 is the latitudinal scale of the 

motion, p is a pressure scale, taken to be the surface pressure 

at the equator. The scale of m,   fJU/^k^   is suggested by the 

continuity equation (4).  We also assume that i>0  is an appropri- 

ate scale for the gravitational potential, and G is a sca.e for 

the turbulent stresses. 

We shall denote e/BDU by f , and U/20a by Ro.  We call 

these two parameters the Ekman number and the Rossby number, 

respectively.  It is Important to note that the Rossby number 

defined b«Xl is not that used by Charney (1948,1965).  He include: 

the quantity sin $ in his Rossby number.  Ihe Rossby number we 

have defined is a constant, independent of (}>. 

In terms of these parameters the nondimensionalized equa- 

tions become 

(2.12)    HR£ (V || + CO||)+RO tan(^c + <|>0<j.)u^ + sin(i.c+(t)0^)u 9 
• o _ ^ 

o 
'^-SÄf (*e + M.P). 

. ÖV   COS((t)     +(|) J) 
(2.13)    ^ + —-—s ..e.  = 0 ■ W     coslXTTTT^ c     To, 

> 

3. Turbulence Model 

Let us now consider models for the turbulence terms. The 

northward transport of eastward momentum due to turbulence is 

A IA^I s  ^^M 
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(3.1) XN = - 
JL  [(v'u» ) cos J] , 

a cos I a| 

where a prime denotes the fluctuation from the zonally averaged 

flow, and the bar denotes the zonal average.  We shall assume a 

mixing length hypothesis based on the assumption that differences 

in the eastward velocity are most effective in supporting the 

turbulence.  For a discussion of mixing length theory, see Hinze 

(1959). 

We assume that 

(3.2a) 

and 

(3.2b) 

u' = 

V 

'1 öu 
a H 

h_ öu a 3 
where |. and l    are mixing lengths. The northward transport of 

eastward momentum due to turbulence is 

(3.3) XN = 

2 2 
LHU   1 

ar ir   cos To 

_ J_ f 2 bu 
1  R l H ^ 

du 
^ 

cos fl 

where Lu is the horizontal size scale of the eddies, and AtI is ri H 

an average dimensionless mixing length, defined by 

(3.4) L
H
A
H " I ^i«: 

The appearance of the minus sign is accounted for by the 

following argument.  If öu/dij) > 0 and |. > 0, then u' > 0; but 

the average momentum transport is southward, since we are moving 

a parcel with excess momentum -* ^ southward, so that v' < 0. 

Similar arguments for äu/ä^ < 0 lead to (3.3). 
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The vertical transport of eastward momentum is 

(3.5) 

If we again use mixing lengths, we have 

(3.6a) 

and 

(3.6b) 

öp 

*  ^ .  äu 

dp 

where we now assume that the velocity differences which are 

effective in the vertical momentum transport are vertical differ- 

ences, so that the relevant derivative is öu/öp.  Here £  and K 

are effective pressure differences which scale the vertical 

turbulent eddies. The quantity pg converts vertical z-velocity 

to vertical p-velo-ity.  This hypothesis leads to the following 

expression for the /rrtical transport of eastward r-nentum due to 

turbulence: 

(3.7) ^ T— 7^7 'PXv(^) ! • -3—^P tP^Sv' 
^o 

He re 1^ is the vertical size scale of the eddies and Av is an V 
average dimensionless mixing length, po is the density at the 

surface, and p = p p. 

For the turbulent transport of northward momentum, we shall 

use similar considerations.  Again we snail assume that differ- 

ences in eastward velocity arc most effective in supporting the 

■•* >*^^t(jw..Ä; „^„j^-.       .-..*„ 
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turbulence.    This leads  to  the expression 

(3.8) 

and 

(3.9) 

YN = 

YV " 

L2U2 LHU        t      r    2,^x2. 

2  2 
V     0    f   2,äu>2 

*o 

where \i    and a„ are  average  dimensionless mixing lengths.     We 
n V 

shall assume that A^,   A..,   \xu and a.r are  constants.     Then,   without 
li V n v 

loss  of generality,   we  can take  AH = 1. 

The  corr^t  scale @ for the  turbulence  terms   is  the  larger 

of the vertical and horizontal  scales. 

(3.10) 9 = max 

2 2       2  2 

By talking LH = 100 km, and Ly ■ 100 mb, corresponding to a 

vertical eddy scale of a couple of kilometers, we find that the 

horizontal and vertical turbulence terms are comparable if i =1. 

If i is smaller, the horizontal terms are dominant.  Unless To 

otherwise specified, we shall use the horizontal turbulence terms 

for scaling purposes.  We denote LH/a by e.  We now assume that 

g        2 
e << 1 and Ro << 1.  Since  G =■§_.._£, the turbulence terms will 

*o *0 
be negligible compared to the advective terms as long as |i >> e. 

Thus for latitudinal scales larger than a typical large scale 

eddy, we can neglect the turbulence terms. More precisely, the 

role of turbulence has been relegated to various boundary layers 

in the flow. 

10 
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4.   The   Interior or Temperate Approximation 

In seeking approximate  solutions,   it  is natural  to assume 

i,    =  1.   4    = 0,   and a = 1  and neglect  terms  of order Ro. To c 
yields the  approximation 

This 

(4.1) 

(4.3) 

- sin fv = 0 , 

sin (Jm = - ö$/ö(t> , 

äo)  .   dv  cos  ' 
"5p       cos  $ ä 

=  0 

Here we  have  set $    = 2nUa. 

Equation  (4.1)  suggests not that v = 0,  but  that  the  first 

term  in the expansion of v  is  small compared to  1.     An Ekman 

layer exoansion for the  surface boundary layer   (Pedlosky,   1969) 
1/2 

suggests  that the next  term  in the expansion is  of order   £ 

Pedloslly ignores  the  inertia terms  and uses  a viscous  term to 

model the  effects of turbulence.     Inclusion of the  inertia terms 

does not change the  result.     However,   at this  order  in the  inner 

equation v  is  still zero. 

The  appropriate balance  in the  inner region is a =   £,   so 

that 

(404) -sin (j)v = X . 

From equations (4.1-4.4), the mechanism driving the motion 

in the interior (temperate) region is as follows:  the geo- 

potential drives the eastward motion through the Coriolis force. 

The meridional motions v and a) are driven by friction; more 

11 
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specifically, the turbulent stress in the eastward direction 

drives the northward motion.  The vertical motion is determined 

through the continuity equation. 

In order to determine the motions further, it is necessary 

to have expressions for the geopotential • and the density p, 

which appearc in the eastward turbulent stress force X.  Thermo- 

dynamic considerations are important in each expression. 

Since the velocity scale U can be taken to be the largest 

value assumed by the magnitude of the velocity vector, it is 

approximately (in dimensional variables) 

(^•5) U ■ max 
/\    * 

te/M 
20a sin ^ 

If we take values of # from Schutz and Gates (1971) the velocity 

scale derived from the model is about 30 m/sec, which gives a 

Rossby number of about 0.0%  The eastward velocity in the 

northern hemisphere, as calculated from the data of Schutz and 

gates, is shown in Figure 1. 

From the meridional motions, using the mixing length 

hypothesis of Section 3, we have 

(4.6)   v = - 
1   / 1    0 röuiäui    .] . ä ,äuvPi 

L,;Xra'p g 
wnere p ^_^— 1S assumed to be of order 1. 

PoLH 
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90    80    70    60    50    40    30    20       (^(o) 
Figure 1«  Zonal wind versus latitude: 

at 4ü0 mb   predicted; o observed; 
at 800 mb -.- predicted; x observed. 
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5. The Temperate Surface Boundary Layer 

There are several boundary layers needed to complete the 

picture.  It is well known that an Ekinan (turbulent) boundary 

layer is needed to satisfy the boundary conditions at the earth's 

surface (2.6a,b).  In the temperate region, where the advective 

terms are negligible, the analysis of Pedlosky is valid. 

Pedlosky, however, uses Newtonian viscosity terms to model the 

turbulence. We feel that the effect of turbulence car. be better 

modelled by the mixing length considerations introduced before. 

In the temperate region we wish to balance the turbulence 

terms with the rotation terms.  This leads to a pressure scale of 

(p gi* JL) *'t   and the following equations of motion. 

A 

(5.1) it(^n ...l«*r. 

(5.2) 

(5.3) 

Uv4 ((l^)2] = sin ^u f « (♦,?.(♦)) , ■v H l ^ 

&U , ÖV cos § 
TT "'"  ^ *" — u * 

*k 

■5p cos 4» ^ 

where Av was tetken to be 1. 

Since the surface boundary layer does not shed any light 

on the global circulation, we shall not discuss it further here. 

6. The Equatorial Cell 

The approximation $    = 1 is not valid near the equator, 

where §  is small, or near the poles, where tan <() is large. To 

14 
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find  solutions valid in these  regions,   vje must  re-scale  the  lati- 

tude  by  choosing ^    to be   small.     The  result  is  an advective 

"boundary layer",   which Lfl  small compared to interior  sizes,   but 

large  compared to the Ekman  layers. 

To  obtain an approximation valid near the  equator,   we  let 

(()    =   (Ro)1/2,   ^    ■ 0,   and a =  1.     The  equations  then become 

(6.1) 

(6.2) 

(6.3) 

Ro ( v |^ + 03 |^ +  (jm -; 

"5? 
äu 

■5P 

0$ 
1$ (|)=0/ 

= 0(Ro3/'2)   , 

Ro(v ^ + 03^ -   (t>v)  = 0(Ro5/2)   . 

1/2 
In this case we scale the geopotential by ^ = (Ro) / (21D). 

Thus, to lowest order in Ro we have 

(6.4) äv   ,   öü)       n 

(6.5) 
öu   .         hu        ir 

V  äf + ^ ^F  =  *V   ' 

(6.6) v|v + ^ = -^- 
(j)=0 

In terms of the equatorial dimensionless variables, the region 

on which we should consider (6.4-6.6) is 

- 

(6.7) -00     <4)<0D, O^P^1 

Let us  attempt a solution to the equations  of motion  (6.4 

6.6)  under the  conditions  corresponding to "spring"   or "fall". 
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that is, symmetric forcing.  If $ is symmetric, then ^/dtl   =0 
4=0  ' 

and the equations become 

(6.8) 

(6.9) 

(6.10) 

„  du   ,        du       i 
v ^ + ^ -Sp = ^ • 

„  dv   ,        Sv 
54        op 

dv ÖCÜ   . 
^ + ^-0 

■ -ftt , 

The relevant boundary conditions are (2.8a,b).  A turbulent 

surface boundary 1 i.yer is needed to satisfy (2.6a,b). 

The balance in the equatorial region, as expressed by equa- 

tions (6.8-6.10) is the balance between rotation and advection. 

The driving mechanism (source of energy) is the boundary layer 

surrounding the equatorial region, with the important driving 

being through a turbulent layer between the equatorial region 

and the interior or temperate region. 

The continuity equation (6.10) implies that there exists a 

stream function ^ with 

(6.11) v = 11 and ü) = 

Since we assume that there is no flow through the top (p = o) or 

the bottom (p = 1) of the atmosphere, the lines p = 0 or 1 are 

streamlines. 

The system of partial differential equations (6.8-6.10) is 

hyperbolic; hence there exist characteristic curves.  The equa- 

tions for the characteristics are 

16 

A -^ ^ *^^ 



" *-» ^7 mmm TT- 7 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

dp 
dt 

-  v  , 

CU 

dv B   .fU     J 

where  t  is  a variable  along a characteristic. 

We  observe  from this  system  that  d^/dt = 0  so that  the 

characteristics  for the  system are   the  streamlines. 

From the  two momentum equaxions we  see  that  the  horizontal 
2       2 

kinetic  energy E ■ -—i—- is  constant  on each characteristic. 

We  shall use E  to parameterize  the  characteristics.     This  implies 

that V = ${*)• 

The eastward momentum equation (6.14) along with (6.12) 

give u = iU + u (E).  We then obtain v from U + v = 2E, giving 

(6.16) ^ = v=±/2E-^.u/-u 

The solutions to the ) equation (6.16) depend on the sign 

of u .  In order to get north-south symmetry, we must choose 

u < 0.  This gives v = 0 at f^ = 0, and hence allows a conver- 

gence zone at the equator.  The resulting solution for the (j) 

equation (6.l6) is 

(6.17) 
^ t 

,j,(t) = t^E) dn(-|-, k) 

wh^re dn is the delta amplitude function, and ffl is related to 

u0 oy 

17 
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(6.18 1 

-^o 

uid 

g/5E 

2E , 

1/2 

It remains to determine the location of the streamlines 

To do tnis we write 

P 

(6.19) p mf dp+po(^)  , 
P0(*) 

for each (j) and 

i . *$* . UtQSl (W*) . 

We   shall  assume  that  at p = p   {$),   v = 0,     Thus 

(6.20) pmf —^^M/^L^. 
E°a)^E'-u^-u/-^ 

- dE' +p   (l) 

whore 

(6.21) 2Eo(^)  =(uo{Eo^))  +£J   • 

We now impose the conditions that p = 0 and p = 1 are 

characteristics.  We note that since ^ = 0 lies on both these 

curves, the value of E corresponding to these curves is given by 
f 

(6.22) 

This yields 

2E 1= K(El))2 • 

(6.25) 

and 

P0(4>) = 1/2 

18 

^ -^   / .^^ 



■^7 x^r 
^ 

(6.24) 1 
5 •/ 

dT^/dE1 

i:o(<,) /a« 
2   l2 4 
o  or 

T, 
dE' 

This integral equation gives a relation between ^(E) and u (E). 

Thus for this system, on the domain given previously, there is 

one arbitrary function, which we may tike to be u (E). 

The appearance of an undetermined function in the solution 

is a common occurrence in inviscid flows.  Presumably the func- 

tion uo(E) can be determined by including dissipative effects, 

as in Batchelor (1956).  The condition which u (E) must satisfy 

J.S 

<0 Xdt = 0 , 

E=const 

where ^ = — (||) .  This leads to the following functional 

differential equation for u : o 

1 

(6.25) Auo * BuoUö  +  Cuo     +  Du^ + F =  0  , 

where  a prime denotes  differentiation with respect  to E,   and 

A ^KW^'2  , 

B =a>a?dt  , 

c ^oxyV'2 +^Wdt^"/r
4 .fuJitf*/*'* , 

D = -^^V^'   > 

F =^)idt , 

- 
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are functionals of u ,  Since the equation is second order, we 

need two conditions on u (£,)•  These will be discus'.ed in 

Section 7. 

We shall not attempt to solve equation (6.25) here. 

Instead, let us examine the motions obtained by taking u con- 

stant.  One implication of this assumption is that the eastward 

velocity is then independent of the verticax coordinate.  This 

assumption is somewhat unreal physically, but allows us to solve 

the integral equation (6.24). 
u 

With u taken to be a constant, E, = -J2 and 
'2 2 

!«(♦) ■ K4)
: 

. The equation itself is an Abel's equation. -o - -      —r- 

and its solution is easily determined to be 

(6.26) d£ | 2 
HE '" -rr 

^ % - 2E 

Substituting this result in equation (6.20) for p gives 

(6.27) p = •* i — arctan 
2E - u2 - u i2 - (l)4/4 o  oT  r ' 

V ~"5  
U* - 2E 
o 

The resulting motions are shown in Figures 2 and 3. 

The meridional motions show Hadley cells, as observed in 

the tropical regions of the earth's atmosphere. These cells 

extend to latitude J = ±2(Ro|uo| )1//2 in either hemisphere. If 

we assume that the appropriate value of u is tha^ which gives 

the global maximum value of u at the edge of the cell, we have 

Uo " ■■1' and we find that the cells extend to about 21° north or 

t 
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Figure 2.  Zonal wind versus latitude (both scaled) 
in the equatorial cells. 
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Figure 5.  Streamlines for the meridional 
motion in scaled variables. 
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south latitude.  With this assumption, the change from westerly 

• 1/2 winds  to trade winds  occurs  a.t fy = ± /?  (Ro|u  |)  /   ,   corre- 

sponding to  about   15°•     The predicted values  agree  reasonably 

w^ll with observations. 

Using considerations  similar to those  in Section 5>   we  find 

that  the  surface boundary layer in the  tropical Hadley cell is 

governed  oj the  equations 

(6.28) 

(6.29) 

(6.30) 

ö    c /^u^, i,r   .   „  öu   ,        du 

ÖV  +  dcu  _   „ 

The vertical length scale for this layer is (p^L^i (Ro)1/2)   . 

We shall not discuss this layer further here. 

7. The Turbulent Connecting Layer 

From equations (6.17) and (6.18) we see that the solutions 

in the Hadley cell region are defined only for 
* 1/2 

|(j)| _< 2(Ro|u (E,)!) , even when u is not assumed to be a con- 

stant. It is this failure of the solution which indicates that 

a turbulent boundary layer is needed to connect the Hadley cell 

to the temperate region. Moreover, since equations (6.8-6.10) 

have no forcing term, the driving mechanism for the Hadley cell 

must be movement of part of its boundary.  We claim that the 

2.3 
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Hadley circulation is driven by the turbulent layer at the pole- 

ward edges of the cells. 

The correct scaling for the turbulent layer between the 

tropical Hadley cell and the temperate region U 4 = 2(Ro)1//2 

and (j)o = c.  We ^ssume that e < (Ro) 1/2 The approximate equa- 

tiors become 

(7.1) 

(7.2) 

(7.5) 

2 Jk    tjUxi       . bv dv 

öi + ^P - 0 

a/2 to order (Ro)' 

These equations are difficult to solve.  We shall satisfy 

ourselves by assuming that u is continuous, and noting that if 

we integrate (7.1) or (7.2) from 0 to 1 in p, and from -co to co 

in f« we derive the result that across the boundary layer, the 

quantity 

I 
0 

^u^2 * V  dp 

is conserved. Physically, the second condition states that the 

total northward turbulent flux of eastward momentum through the 

layer is a constant. 

We can estimate the thickness of the turbulent layer by 

noting that its latitudinal thickness scale is e, the ratio of 

the eddy size to the earth's radius.  If we assume an eddy size 
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of a few hundred kilometers, then e is comparable to Ro, the 

Rossby number, and 4>o is about 2°. Thus we might expect its 

influence to be felt for about lO or so. 

3. The Polar Region 

The mechanics in the polar region is somewhat more com- 

plicated than that of the tropical regions.  If we attempt a 

solution analogous to the tropical aavective boundary layer 

surrounded by turbulent layers, the turbulent layers are as 

large as the advective region.  This suggests that the equations 

appropriate in the polar region entail a bplance between rota- 

tion, advection and turbulence.  In order to model this, we 

assume that ^ = J, ^ = Ro, a = 1 and e = Ro. The resulting 

approximate equations are 

^u ,   du       "v 

9    2 
dv    tV       u  , ^H ö fi/äu.2.   H /TT    n) 

^u ,   du   „  uv  AH i_ ri,^)2! 

öv , da) j v 

t8-5'       ä; + ^ + i = 0 

to order Ro. 

In terms of the polar dimensionless variables, the region 

under consideration U 0 > 4« 0 1 V 1 ^n  where pn r' ^s^^s^0^' 

In order that the geopotential be smooth at \.he pole, we 

must require to(£*F)/)4 = 0' 
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The equations valid In the polar region are not reaaily 

tree.tab3e by classical means. We can, however, estimate the 

extent of this polar region, which we assume to be a cell, as In 

the tropical case.  Since (j) = Ro, corresponding to a few degrees 

latitude, the polar region should be several, perhaps 10 degrees 

wide.  This Is somewhat smaller than observations Indicate for 

the earth. 

9. The Energy Budget 

A description of the motions of the atmosphere would not be 

complete without an explanation of the energy budget.  The asymp- 

totic approach taken here suggests that the following process Is 

responsible for the dissipation of the potential energy caused 

by solar heating.  That potential energy is in the form of a 

north-south geopotential gradient.  This geopotential gradient 

drives the eastward flow in the middle latitudes, and hence is 

changed to the kinetic energy of the mean zonal flow there. 

Through turbulence generated by the zonal flow in the form of 

large scale eddies and their related vertical overturnings, the 

kinetic energy of the zonal flow is changed into kinetic energy 

of the meridional flow. 

The zonal flow in the middle latitudes also drives large 

scale eddies at the Interface between the tropical Hadley cell 

and the temperate region.  The large scale eddies in turn drive 

the motions in the Hadley cell, where the zonal motion is coupled 

to the meridional motion through the Coriolls forces. 
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The zonal flow also drives the motions in the polar cells, 

which in general are weaker than those in the tropical cell.  For 

a schematic representation of the energy cycle, see Figure k. 

10. Jupiter's AUosphere 

It is of interest to apply some of the ideas presented in 

this paper to the motions of the atmosphere of Jupiter. 

Jupiter's atmosphere, with the major exception of the Great Red 

Spot, appears to be zonally symmetric.  In addition, the estima- 

-8      -2 
ted Ekman and Rossby numbers for Jupiter are 10'' and 10 

respectively.  In that case, the analysis presented here should 

be able to predict some features of the motion, provided that the 

atmosphere meets the other requirements herein, such as the 

shallow atmosphere assumption. 

Since a knowledge of the geopotential is required for pre- 

diction of the winds in the temperate region, we shall not concern 

ourselves with that part of the atmosphere.  Some features of the 

motions in the tropical zones, on tae other hand, can be discerned 

from the value of the Rossby number.  In particular, the motions 

show a Hadley cell, of width approximately 10°. This width 

agrees extremely well with the width of the equatorial zone on 

Jupiter.  The present model also predicts trade winds, changing 

to prevailing westerlies at about 8°.  This prediction is not 

observed; in fact the eaot-west circulation is observed to be 

eastward. 
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Figure 4. The driving mechanisms for 
global atmospheric motions. 
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11. Summary 

Let us summarize the asymptotic scheme we have presented 

for appioximating the motions of the earth's atmosphere. We 

separated thermodynamic considerations from the equations of 

motion by assuming that the temperature field is known. This 

allowed us to treat the fluid dynamical equations as forced by 

thf geopotential. 

We assumed a mixing length theory for the turbulence terms. 

By assuming that the eddy size is small compared to the earth's 

radius, we found that the effect of turbulence is confined to 

relatively small boundary layers. 

We also assumed that the motions we seek are slow compared 

to the speed of the earth's rotation speed.  This implies that 

the inertial terms are negligible except in layers which are rela- 

tively narrow compared to the whole atmosphere, but large compared 

to the turbulent layers. These advective boundary layers occur 

near the equator and the poles, and take the form of meridional 

cells. 

The dynamics of the motion can be summarized as follows. 

In the temperate region, the north-south geopotential gradient 

drives the prevailing westerlies.  Turbulent eddies drive the 

meridional motions. The eastward flow at the temperate edges of 

the polar and tropical ce;:.. drives the motions in these cells. 

In the equatorial cell, the balance between the Coriolis force 

and the advection causes the prevailing westerlies to change to 

trade winds near the equator, and also creates the meridional 

cell pattern. 
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There is a turbulent layer connecting the equatorial cell 

to the temperate zone. 

The mechanics in the polar region is complicated by the 

fact that the turbulent terms, the Coriolis terms and the advec- 

tive terms are all of equal importance. 

Approximate solutions for the motion are not found in 

regions where turbulence is important.  Presumably numerical 

techniques are needed for these regions. 

To have a complete description of the atmospheric dynamics, 

we need to be able to derive expressions for geopotential 4 and 

the density p, which can be expressed in terms of the temperature 

x as p = p/RT.  The geopotential and temperature are determined 

through the energy equation and the vertical momentum equation, 

along with other balance laws for quantities which arc important 

in thermodynamic considerations, such as water vapor, cloud 

cover, etc.  In general, these equations involve the velocity 

components, for which we have approximate expressions involving 

the geopotential and the temperature.  In theory, we need only 

substitute the appropriate expressions for the velocity components 

where they appear to yield a thermodynamic system involving only 

thermodynamic variables, independent of the velocity components. 

In fact, however, the expressions for the velocity components are 

not simple expressions involving ehe thermodynamic variables, and 

so this procedure does not lead to easily tractible thermodyna lie 

equations.  We shall leave the thermodynamic considerations foi 

the future. 
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An approximate description of atmospheric dynamics could 

be useful in predicting climate changes due to various effects, 

for example, changes in cloud cover, solar absorption, etc. 

Most of these changes alter the thermodynamics of the atmosphere. 

In addition, the thermodynamics is affected by the motion of the 

atmosphere.  What we have presented is an approximate description 

of the motions derived from given thermodynamic conditions.  This 

reduces the problem to consideration of thermodynamic equations. 

Thus it is felt that this work represents a step toward a useful 

analytical approach to global climatology. 
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